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Motivation

* Understanding the geotechnical properties of lunar regolith simulants
and how they vary is essential for future rover operations and in situ

resource utilization (ISRU) to support long-term lunar infrastructure [1]

* Moisture adsorption and thermal behavior in simulants significantly

impact factors such as
] Compaction
] Wheel interactions
1 Regolith processing for resource extraction [2]

How is lunar highlands regolith simulant, LHS-1E,
compacted/altered as a rover moves through it
during surface operations [3]?

How does compacted regolith simulant’s moisture
content behave with environmental mitigations in
place?

RIDER

* RIDER is a large-scale (3.8 m long x 0.9 m wide x 0.5 m deep) testbed
located at UCF's Exolith Lab (Fig. 1) [4]

* Testing Configurations

] Thermal Variation
o 30 cm deep, uncompacted (Bulk Density: ~1.60 g/cm?)

] Rover specs
o Prototype Astrobotic Polaris Wheel
o Average speed of 9 cm/s
o Varying loads between 5 - 50 kg

1 A hardware suite was designed and implemented into the testbed

to allow for consistent heating and image locations (Fig. 2)
| Moisture Content
o 30 cm deep, compacted (Bulk Density: ~1.75 g/cm?)

o 30 cm deep, compacted with
the surface layer

~2 — 3 cm of loose particles on
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Figure 1: RIDER facility at UCF's Exolith Lab, with dehumidifier unit outlined in orange
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Methodology & Results

A Hatco Glo-Ray Infrared Strip Heater was used to
heat the simulant until temperature readings were
within +1°C (Fig. 2)

* |mages were collected using a FLIR Boson thermal
camera, and temperature readings were taken using
a Mestek Industrial Infrared Thermometer

 Data was collected in three locations after every 10
wheel passes for a total of 100 (Fig. 3)

* Using ASTM Standard D2216-19 [5], samples were
collected from three locations along the length of the
bin to examine moisture content in both compacted
and loose simulant

Figure 2: RIDER Facility with integrated hardware Figure 3: Temperature collection locations (numbered 1,
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Figure 4: (Top Left) Thermal image of undisturbed LHS-1E; (Top Right)
Thermal image of LHS-1E after initial wheel interaction; (Bottom Left)

Thermal image of LHS-1E fully heated; (Bottom Right) Thermal image
of LHS-1E during cooldown

RELATIVE HUMIDITY AND RESULTING MOISTURE CONTENT OF LHS-1E
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Figure 7: Relative humidity and resulting moisture content of LHS-1E
within the RIDER testbed at three different surface locations and core

2, and 3) for wheel passes 1-10
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Figure 5: Temperature profile after
the first 10 wheel passes, where the
red dashed line indicates when the
heat source was removed from the
simulant
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Figure 6: Temperature profile after
the final 10 wheel passes, where
the red dashed line indicates when
the heat source was removed from
the simulant

Figure 8: Fluid flow simulation
within RIDER
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* Thermal Variation

Distinct temperature variation for different
regions of the rover wheel path (Fig. 4)

o Some wheel track grouser locations pointed away
from the heat source are cooler due to not receiving
direct illumination from the heat source (Fig. 4 Top
Right)

o After significant exposure to thoroughly heated
surrounding regolith, the temperatures at and
throughout the grouser imprint (location 2) become
relatively warmer than those at the surface due to
heat conducting downward throughout the simulant
(Fig. 3, 4 Bottom Left, Bottom Right)

* Moisture Content
o Moisture content across the RIDER testbed exhibited
significant spatial variation (Fig. 7)
o The left side of the testbed exhibited unexpected
increases at lower relative humidities

o The center demonstrated a steadier trend, while the
right side consistently showed the lowest average
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surface-level humidity variations, exhibited
consistent moisture content readings,

indicating the influence of initial compaction
conditions

Maximum Temperature by Location

Wheel Passes Location 3

123.8°C
117.8°C
121.6°C

Location 2
109.2°C
112.1°C
108.5°C

Location 1

70 103.5°C

90 107.9°C
100 109.9°C

* Highest temperature experienced overall

oY Conclusions
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* This research investigates temperature variations in LHS-1E

due to rover wheel interaction and moisture content levels
to establish an initial baseline under terrestrial conditions

* The thermal effects due to compaction observed in groused
wheel tracks have implications for future rover operations
on the lunar surface:

] Subsurface Heat Retention
] Thermal Mapping Accuracy
| Rover Design
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